An International Research Journal (Peer-Reviewed / Refereed)

http://bomsr.com/ Volume .5, \$1.2017; ISSN: 2348-0580

BALANCED FACTOR CONGRUENCES ON PRE A*- ALGEBRAS

V. RAMABRAHMAM¹, U.SURYAKUMAR², Dr. A. SATYANARAYANA²

¹Lecturer in Mathematics, Sir CRR College, Eluru, A.P., India ² Lecturer in Mathematics, ANR College, Gudiwada, A.P., India

Email: asnmat1969@yahoo.in

ABSTRACT

In this paper we prove for any element $\,a\,$ of a Pre A*-algebra A, the set A_a is a Pre A*-algebra under the operations \land and \lor and the complementation $^{\circ}$. We also prove that if θ is a factor congruence on A, then $\theta \cap (A_a \times A_a)$ is a balanced factor congruence of A_a for each $a \in A$ and hence there exists unique $S_a \in B(A_a)$ such that $\theta \cap (A_a \times A_a) = \theta_{S_a} = \{(x, y) \in A_a \times A_a / S_a \land x = S_a \land y\}$. Keywords: Boolean algebra, Pre A*-algebra, congruence, centre of Pre A*-algebra, factor

congruence, balanced factor congruence.

AMS subject classification (2000): 06E05, 06E25,06E99,06B10

INTRODUCTION

In 1948 the study of lattice theory had been made by Birkhoff [7]. In a draft paper [3], The Equational Theory of Disjoint Alternatives around 1989, E.G.Maines introduced the concept of Ada(Algebra of disjoint alternatives) $(A, \wedge, \vee, (-)', (-)_{\pi}, 0, 1, 2)$ which is however differ from the definition of the Ada of his later paper [4] Adas and the equational theory of if-then-else in 1993. While the Ada of the earlier draft seems to be based on extending the If-Then –Else concept more on the basis of Boolean algebra and the later concept is based on C-algebra $^{(A,\wedge,\vee,')}$ introduced by Fernando Guzman and Craig.C. Squir[1].

1994, P. Koteswara Rao[2] first introduced the concept A*-Algebra $(A,\wedge,\vee,^*,(-\tilde{)},(-)_\pi,0,1,2)$ not only studied the equivalence with Ada, C-algebra, Ada's connection with 3- Ring, the If-Then-Else structure over A*-algebra and Ideal of A*-algebra. . In 2000, J. Venkateswara Rao [5] introduced the concept of Pre A*-algebra $(A, \wedge, \vee, (-))$ as the variety generated by the 3element algebra A = {0,1,2} which is an algebraic form of three valued conditional logic.In [8] A.Satyanarayana et al. generated Semilattice structure on Pre A*-Algebras .In [10], A.Satyanarayana defined a partial ordering on a Pre A*-algebra A and the properties of A as a poset are studied. In [9] A.Satyanarayana. et.all derive necessary and sufficient conditions for pre A*-algebra A to become a Boolean algebra in terms of the partial ordering.

In this paper we prove for any element a of a Pre A*-algebra A, the set A_a is a Pre A*-algebra under the operations ^ and V induced by those of A and the complementation a. We also prove that if θ is a factor congruence on A ,then $\theta \cap (A_a \times A_a)$ is a balanced factor congruence of A_a for each $a \in A$ and hence there exists unique $S_a \in B(A_a)$ such that $\theta \cap (A_a \times A_a) = \theta_{S_a}$.

An International Research Journal (Peer-Reviewed / Refereed)

http://bomsr.com/

Volume .5, \$1.2017; ISSN: 2348-0580

1. PRELIMINARIES:

1.1. Definition: Boolean algebra is an algebra $(B, \vee, \wedge, (-)', 0, 1)$ with two binary operations, one unary operation (called complementation), and two nullary operations which satisfies:

(i)
$$(B,\vee,\wedge)$$
 is a distributive lattice

(ii)
$$x \land 0 = 0, x \lor 1 = 1$$

(iii)
$$x \wedge x' = 0$$
, $x \vee x' = 1$

We can prove that
$$x'' = x$$
, $(x \lor y)' = x' \land y'$, $(x \land y)' = x' \lor y'$ for all $x, y \in B$.

In this section we concentrate on the algebraic structure of Pre A*-algebra and state some results which will be used in the later text.

1.2. Definition: An algebra $(A, \land, \lor, (-))$ where A is non-empty set with 1, \land , \lor are binary operations and (-) is a unary operation satisfying

(a)
$$x^{\sim} = x \quad \forall x \in A$$

(b)
$$x \wedge x = x$$
, $\forall x \in A$

(c)
$$x \wedge y = y \wedge x$$
, $\forall x, y \in A$

(d)
$$(x \wedge y)^- = x^- \vee y^- \quad \forall x, y \in A$$

$$(e)$$
 $x \wedge (y \wedge z) = (x \wedge y) \wedge z, \quad \forall x, y, z \in A$

(f)
$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z), \quad \forall x, y, z \in A$$

(g)
$$x \wedge y = x \wedge (x \vee y)$$
, $\forall x, y \in A$ is called a Pre A*-algebra

1.3. Example [6]: 3 = $\{0, 1, 2\}$ with operations $^{\land, \lor}$, (-) defined below is a Pre A*-algebra.

٨	0	1	2		V	0	1	2		x	x ~
0	0	0	2	_	0	0	1	2	_	0	
1	0	1	2				1			1	
2	2	2	2		2	2	2	2		2	2

1.4. Note: The elements 0, 1, 2 in the above example satisfy the following laws:

(a)
$$2^{\sim} = 2$$

(b)
$$1 \land x = x \text{ for all } x \in 3$$

(c)
$$0 \lor x = x \text{ for all } x \in 3$$

(d)
$$2 \wedge x = 2 \vee x = 2$$
 for all $x \in \mathbf{3}$.

1.5. Example: 2 = $\{0, 1\}$ with operations \land , \lor , $(-)^{\sim}$ defined below is a Pre A*-algebra.

^	0	1	V	0	1			x~
0	0	0	0			=	0	1 0
1	0	1	1	1	1		1	0

(BOMSR)

An International Research Journal (Peer-Reviewed / Refereed)

http://bomsr.com/

Volume .5, \$1.2017; ISSN: 2348-0580

1.6. Note:

(i) $(2,\vee,\wedge,(-\tilde{i}))$ is a Boolean algebra. So every Boolean algebra is a Pre A* algebra.

- (ii) The Boolean algebra 2 = {0, 1} is an underlying set in the Pre A*-algebra 3 =
- $\{0, 1, 2\}$. Further the readers can note that the Pre A*-algebra $\mathbf{3} = \{0, 1, 2\}$ is not a Boolean algebra as there is a critical element 2 which is not in the Boolean algebra $\mathbf{2} = \{0, 1\}$.
- (iii) The identities 1.2(a) and 1.2(d) imply that the varieties of Pre A*-algebras satisfies all the dual statements of 1.2(b) to 1.2(g).
- **1.7. Definition:** Let A be a Pre A*-algebra. An element $^{\mathcal{X}} \in A$ is called central element of A if $x \vee \tilde{x}=1$ and the set $\{x \in A/x \vee \tilde{x}=1\}$ of all central elements of A is called the centre of A and it is denoted by B (A).
- **1.8. Theorem:**[6] Let A be a Pre A*-algebra with 1, then B (A) is a Boolean algebra with the induced operations $^{\land}, ^{\lor}, ^{(-)}$
- **1.9. Lemma:** [10] Let $(A, \wedge, \vee, (-))$ be a Pre A*-algebra and let $a \in A$. Then the relation $\theta_a = \{(x, y) \in A \times A / \ a \wedge x = a \wedge y\}$ is
- (a) a congruence relation as in Boolean algebra.

(b)
$$\theta_a \cap \theta_{a^-} = \theta_{a \vee a^-}$$

(c)
$$\theta_a \cap \theta_b \subseteq \theta_{a \lor b}$$

(d)
$$\theta_a \cap \theta_{a^{\sim}} \subseteq \theta_{a \wedge a^{\sim}}$$

we will write $x \theta_a y$ to indicate $(x, y) \in \theta_a$.

- **1.10. Lemma:** [10] Let A be a Pre A*-algebra and $a,b \in B(A)$ (Boolean algebra with the induced operations $A, \vee, (A)$) by then $A \cap A \cap B = A$
- **1.11. Definition:** Let A be a Pre A*-algebra and $\alpha \in \text{Con(A)}$. Then α is called factor congruence if there exist $\beta \in \text{Con(A)}$ such that $\alpha \cap \beta = \Delta_A$ and $\alpha \circ \beta = A \times A$. In this case β is called direct complement of α .
- **1.12. Definition:** A congruence β on Pre A*-algebra A is called balanced if $(\beta \lor \theta) \cap (\beta \lor \theta^*) = \beta$ for any direct factor congruences θ and any of its direct comoplement θ^* on A.
- 2.Balanced Factor Congruences on Pre A*- algebras:
- **2.1. Theorem:** Let A be a Pre A*-algebra and $a \in A$. Let $A_a = \{x \in A \mid a \land x = x \}$ then A_a is closed under the operations A and A. Also for any A define, A define, A and A then A is a Pre A*-algebra with 1(here a is itself is the identity for A in A.

Proof: Let $^{\mathcal{X}}$, $^{\mathcal{Y}} \in ^{A_a}$. Then a $^{\wedge}$ x = x and a $^{\wedge}$ y = y.

Now $a \land (x \land y) = (a \land x) \land y = x \land y \Rightarrow x \land y \in A_a$

Also $a \land (x \lor y) = (a \land x) \lor (a \land y) = x \lor y \Rightarrow x \lor y \in A_a$

(BOMSR)

An International Research Journal (Peer-Reviewed / Refereed)

http://bomsr.com/

Volume .5, \$1.2017; ISSN: 2348-0580

Therefore A_a is closed under the operation \wedge and \vee .

$$\mathbf{a} \wedge x^a = \mathbf{a} \wedge (\mathbf{a} \wedge x^{\tilde{}}) = \mathbf{a} \wedge x^{\tilde{}} = x^a \Longrightarrow x^a \in A_a$$

Thus A_a is closed under a.

Now for any x, y, $z \in A_a$

(1)
$$x^{aa} = (a \wedge x^{\tilde{}})^a = a \wedge (a \wedge x^{\tilde{}})^a = a \wedge (a^{\tilde{}} \vee x) = a \wedge x = x$$

(2)
$$x \land x = (a \land x) \land (a \land x) = a \land x = x$$

(3)
$$x \wedge y = (a \wedge x) \wedge (a \wedge y) = (a \wedge y) \wedge (a \wedge x) = y \wedge x$$

(4)
$$(x \wedge y)^a = a \wedge (x \wedge y)^a = a \wedge (x^a \vee y^b)^a = a \wedge (x^a \vee y^b)^a = a^a \vee y^b$$

(5)
$$x \land (y \land z) = (a \land x) \land \{(a \land y) \land (a \land z)\}$$

= $a \land \{x \land (y \land z)\}$
= $a \land \{(x \land y) \land z\}$ (since x, y, $z \in A$)
= $(x \land y) \land z$

(6)
$$x \wedge (y \vee z) = (a \wedge x) \wedge \{(a \wedge y) \vee (a \wedge z)\}$$

$$= \{(a \wedge x) \wedge (a \wedge y)\} \vee \{(a \wedge x) \wedge (a \wedge z)\}$$

$$= \{a \wedge (x \wedge y)\} \vee \{(a \wedge (x \wedge z))\}$$

$$= (x \wedge y) \vee (x \wedge z)$$

(7)
$$x \land (x^a \lor y) = x \land \{(a \land x^{\tilde{}}) \lor y\}$$

$$= \{x \land (a \land x^{\tilde{}})\} \lor (x \land y)$$

$$= (x \land x^{\tilde{}}) \lor (x \land y) \text{ (since } a \land x = x)$$

$$= x \land (x^{\tilde{}} \lor y)$$

$$= x \land y$$

Finally $x \in A_a$ implies that $a \land x = x = x \land a$. Thus $(A_a, \land, \lor, ^a)$ is a Pre A*-algebra with A_a as identity for A_a

2.2. Theorem: Let θ be a congruence on A. Then $\theta \cap (A_a \times A_a)$ is a congruence on A_a , for each $a \in A$.

Proof: Suppose θ be a congruence on A, and $a \in A$.

Let
$$\mathbf{x} \in A_a$$
 we have that $(\mathbf{x}, \mathbf{x}) \in A_a \times A_a$

Since θ be congruence we have (x, x) $\in \theta \cap (A_a \times A_a)$

Therefore the result is reflexive.

Let
$$(x, y) \in \theta \cap (A_a \times A_a)$$

Then
$$(x, y) \in \theta$$
 and $(x, y) \in A_a \times A_a$

$$\Rightarrow$$
 (y, x) $\in \theta$ and (y, x) $\in A_a \times A_a$

$$\Rightarrow_{(y, x)} \in \theta \cap (A_a \times A_a)$$

The result is Symmetric.

(BOMSR)

An International Research Journal (Peer-Reviewed / Refereed)

http://bomsr.com/

Volume .5, \$1.2017; ISSN: 2348-0580

Let
$$(x, y), (y, z) \in \theta \cap (A_a \times A_a)$$

$$\Rightarrow$$
 (x, y), (y, z) $\in \theta$ and (x, y), (y, z) $\in A_a \times A_a$

$$\Rightarrow$$
 (x, z) $\in \theta$ and x, y, z $\in A_a$ hence (x, z) $\in A_a \times A_a$

$$\Rightarrow_{(x, z) \in \theta \cap (A_a \times A_a)}$$

The result is Transitive.

Hence the relation is equivalence relation.

Let
$$(x, y), (z, t) \in \theta \cap (A_a \times A_a)$$

Since x, y, z,
$$t \in A_a$$
, we have

$$a \wedge x \wedge z = x \wedge z \Rightarrow x \wedge z \in A_a$$

$$a \land y \land t = y \land t \Rightarrow y \land t \in A_a$$

$$\Rightarrow$$
 $(x \land z, y \land t) \in A_a \times A_a$

Since θ be congruence we have $(x \land z, y \land t) \in \theta \cap (A_a \times A_a)$

Now
$$(x, y) \in \theta \Rightarrow (x^{\tilde{}}, y^{\tilde{}}) \in \theta$$

$$\Rightarrow$$
 (a \land x $,$ a \land y $) \in \theta$ and (a \land x $,$ a \land y $) \in A_a \times A_a$

$$\Rightarrow$$
 (a \land \mathring{x} , a \land \mathring{y}) $\in \theta \cap (A_a \times A_a)$

$$\Rightarrow_{(X^a, Y^a)} \in \theta \cap (A_a \times A_a)$$

Therefore $\theta \cap (A_a \times A_a)$ is compatible (closed) with the binary operation \wedge and unary operation a on A_a

Let
$$(x, y), (z, t) \in \theta \cap (A_a \times A_a)$$

Since x, y, z, $t \in A_a$, we have

$$a \land (x \lor z) = (a \land x) \lor (a \land y) = x \lor z \implies x \lor z \in A_a$$

$$a \land (y \lor t) = (a \land y) \lor (a \land t) = y \lor t \Rightarrow y \lor t \in A_a$$

$$\Rightarrow$$
 (x \vee z, y \vee t) \in $A_a \times A_a$

Therefore $\theta \cap (A_a \times A_a)$ is compatible with \vee also

Thus $\, \theta \cap (A_a \times A_a)$ is a congruence relation on $\, A_a \, .$

2.3. Theorem: Let θ be a factor congruence on a Pre A*-algebra A. Then $\theta \cap (A_a \times A_a)$ is a factor congruence on A_a .

Proof: Since θ be a factor congruence on A there is a congruence θ^{\sim} on A such that $\theta \cap \theta^{\sim} = \Delta_A$ and $\theta \circ \theta^{\sim} = \Delta \times A$.

An International Research Journal (Peer-Reviewed / Refereed)

http://bomsr.com/

Volume .5, \$1.2017; ISSN: 2348-0580

$$\begin{split} \text{Consider } [\theta \cap (^A_a \times ^A_a)] \cap [\theta ^{\sim} \cap (^A_a \times ^A_a)] &= (\theta \cap \theta ^{\sim}) \cap (^A_a \times ^A_a) \\ &= ^{\Delta_A} \cap (^A_a \times ^A_a) \\ &= ^{\Delta_{A_a}} \text{, the diagonal on } ^{A_a} \end{split}$$

Observe that every element in A_a is the form a \land x for some x \in A.

Now, let $(a \land x , a \land y) \in A_a \times A_a$. Then $(a \land x , a \land y) \in A \times A = \theta \circ \theta^{\sim}$ which implies that there exist $z \in A$ such that $(a \land x , z) \in \theta$ and $(z, a \land y) \in \theta^{\sim}$.

Now $(a \land x, a \land z) \in \theta$ and $(a \land z, a \land y) \in \theta^{\sim}$ and $a \land z \in A_a$

Therefore $(a \land x, a \land z) \in \theta \cap (A_a \times A_a)$ and $(a \land z, a \land y) \in \theta \cap (A_a \times A_a)$ and hence $(a \land x, a \land y) \in \theta \cap (A_a \times A_a)$ and hence $(a \land x, a \land y) \in \theta \cap (A_a \times A_a)$

Therefore $[\theta \cap (A_a \times A_a)] \circ [\theta \cap (A_a \times A_a)] = A_a \times A_a$

Therefore $\theta \cap (A_a \times A_a)$ is a factor congruence on A_a and $\theta \cap (A_a \times A_a)$ is a direct complement of $\theta \cap (A_a \times A_a)$.

2.4. Theorem: Let A be a Pre A*-algebra with 1 induced by Boolean algebra , θ is a factor congruence on A and β a direct complement of θ . Then there exist unique $a \in A$ such that $\theta = \theta_a = \{(x,y) \in A \times A \mid a \land x = a \land y\}_{and} \beta = \theta_a = \theta_a = \theta_a$.

Proof: Let 1^{\sim} = 0. Then 1 and 0 are identities for operators \wedge and \vee respectively in A.

We have $\theta \cap \beta = \Delta_A$ and $\theta \circ \beta = A \times A$.

Then clearly $\theta \circ \beta = \beta \circ \theta = A \times A$.

Since $(0, 1) \in A \times A = \theta \circ \beta$, there exist $a \in A$ such that $(0, a) \in \beta$ and $(a, 1) \in \theta$.

First we observe that a is a unique element with the above property. If $b \in A$ also is such that (0, b)

 $\in \beta$ and (b, 1) $\in \theta$ then by the transitive and symmetry of β and θ we get (a, b) $\in \theta \cap \beta = \Delta_A$, the diagonal of A, and hence a = b

Thus a is unique such that (0, a) $\in \beta$ and (a, 1) $\in \theta$

Now we prove that θ = θ_a and β = θ_{a^-}

For any x, $y \in A$ we have

$$(0, a \land x) = (0 \land x, a \land x) \in \beta$$
 (since $(0, a) \in \beta$) and hence $(a \land x, a \land y) \in \beta$

Now
$$(x, y) \in \theta \Rightarrow (a \land x, a \land y) \in \theta \cap \beta = \Delta_A$$

 $\Rightarrow a \land x = a \land y$
 $\Rightarrow (x, y) \in \theta_a$

Therefore $\theta \subseteq \theta_a$.

On the other hand for any $x \in A$, $(a \land x, x) = (a \land x, 1 \land x) \in \theta$ (since $(a, 1) \in \theta$)

(BOMSR)

An International Research Journal (Peer-Reviewed / Refereed)

http://bomsr.com/

Volume .5, \$1.2017; ISSN: 2348-0580

Now
$$(x, y) \in \theta_a \Rightarrow_a \land x = a \land y$$

We have
$$(a \land x, x) \in \theta$$
, $(a \land y, y) \in \theta$ and $a \land x = a \land y \Rightarrow (x, y) \in \theta$

Therefore $\theta_a \subseteq \theta$.

Thus
$$\theta = \theta_a$$
.

Also from $(0, a) \in \beta$ and $(a, 1) \in \theta$ we have that $(0, a) \in \theta$ and $(a, 1) \in \beta$ and by interchanging θ and β in the above argument we get that

$$\beta - \theta_{a^*} - \beta_a = \{(x, y) \in A \times A / a \lor x = a \lor y\}$$

We have already proved that a is unique with this property.

2.5. Theorem: Let A be a Pre A*-algebra with 1 induced by Boolean algebra. Then any factor congruence on A is balanced.

Proof: Let $^{\beta}$ is a factor congruences on Pre A*-algebra A and $^{\theta}$ another factor congruence on A and $^{\theta^{\sim}}$ a direct complement of $^{\theta}$.

Then by 2.4. Theorem there exist a, b \in A such that $\beta = \beta_a$ and $\theta = \theta_b = \beta_b$ and $\theta^* = \theta_b$

Now
$$(\beta \vee \theta) \cap (\beta \vee \theta^{\sim}) = (\beta_{a} \vee \beta_{b^{\sim}}) \cap (\beta_{a} \vee \beta_{b})$$

$$= \beta_{a \vee b^{\square}} \cap \beta_{a \vee b}$$

$$= \beta_{(a \vee b^{\square}) \wedge (a \vee b)}$$

$$= \beta_{a \vee (b^{\square} \wedge b)}$$

$$= \beta_{a \vee 0} = \beta_{a} = \beta$$

Thus β is balanced.

2.6. Theorem: If θ is a factor congruence on A then $\theta \cap (A_a \times A_a)$ is a balanced factor congruence on A_a for each $a \in A$ and there exists unique $A_a \in B(A_a)$ such that $A_a \cap A_a \cap A_a$

Proof: It follows from 2.3, 2.4 and 2.5 theorems

Conclusion

This manuscript makes it possible to identify a factor congruence and its is a unique direct complement on a Pre A*-algebra. The notion of balanced congruence was initiated. It is detected that any factor congruence on Pre A*algebra is balanced. For any element a in a Pre A*algebra, it has been derived a typical Pre A*algebra A_a . It is observed that if θ is a congruence on a Pre A* algebra A, then there is $\theta \cap (A_a \times A_a)$ is a congruence on A_a , for each $A_a \in A$ and if $A_a \in A$ and if $A_a \in A$ and there exists unique $A_a \in A$ and that $A_a \in A$ and there exists unique $A_a \in A$ and that $A_a \in A$ and there exists unique $A_a \in A$ and that $A_a \in A$ and there exists unique $A_a \in A$ and that $A_a \in A$ and there exists unique $A_a \in A$ and that $A_a \in A$ and there exists unique $A_a \in A$ and that $A_a \in A$ and there exists unique $A_a \in A$ and that $A_a \in A$ and there exists unique $A_a \in A$ and that $A_a \in A$ and there exists unique $A_a \in A$ and the exist unique $A_a \in A$ and the exist

(BOMSR)

An International Research Journal (Peer-Reviewed / Refereed)

http://bomsr.com/

Volume .5, \$1.2017; ISSN: 2348-0580

 $S_a \wedge x = S_a \wedge y$

References

- [1]. Fernando Guzman and Craig C. Squir: The Algebra of Conditional logic, Algebra Universalis 27(1990), 88-110
- [2]. Koteswara Rao.P., A*-algebra and If-Then-Else structures (thesis) 1994, Nagarjuna University, A.P., India
- [3]. Manes E.G. The Equational Theory of Disjoint Alternatives, personal communication to Prof. N.V.Subrahmanyam(1989)
- [4]. Manes E.G. Ada and the Equational Theory of If-Then-Else, Algebra Universalis30(1993), 373-394
- [5]. Venkateswara Rao.J. On A*- algebras (thesis) 2000, Nagarjuna University, A.P., India
- [6]. Venkateswara Rao.J Pre A*-algebra as a Poset, African Journal of Mathematics and Computer Science Research Vol.2 pp 073-080, May 2009.
- [7]. Birkhoff .G (1948), Lattice theory, American Mathematical Society, Colloquium, publishers, New York.
- [8]. Satyanarayana.A, Venkateswara Rao.J, "Semilattice structure on Pre A*- Algebras", Asian Journal of Scientific Research, Vol.3 (4), 2010 (pp 249-257).
- [9]. Satyanarayana.A, Venkateswara Rao.J, "Some structural compatibilities of Pre A*-Algebra", African Journal of Mathematics and Computer Science Research.Vol.3 (4), April 2010 (pp 54-59).
- [10]. Satyanarayana.A, (2012), Algebraic Study of Certain Classes of Pre A*- Algebras and C-Algebras (Doctoral Thesis), Nagarjuna University, A.P., India.